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Final Report on Research Contract NAS 8-2619 

APPLICATIONS OF CAL'NLUS OF VARIATIONS 

TO TRAJECTORY ANALYSIS 

by M. G. Boyce and J. L. Linnstaedter 

Other par t ic ipants  on p a r t s  of t h e  pro jec t  were 

G. E. Tyler, Richard K. Williams, 
Flor ian Hardy, Donald F. Bailey 

SUMMARY 

This report  describes i n  t h e  introduction t h e  general nature of 

t h e  work done on Contract NAS 8-2619, and t h e  numbered sect ions include 

i n  shortened form t h e  pr incipal  contr ibut ions t h a t  were made. 

Section I extends t h e  c l a s s i c a l  calculus  of var ia t ions  theory t o  

include control  var iables .  Section I1 i s  a treatment of a spec ia l  m u l t i -  

s t age  f u e l  minimization t r a j e c t o r y  problem i n  which t h e  lengths  of t h e  

t i m e  i n t e r v a l s  of t h e  several  stages a r e  known. Section I11 i s  a 

s implif ied example of such a multistage problem. 

t h e  Denbow multistage theory t o  allow d iscont inui t ies  i n  var iab les  and 

funct ions a t  s tage boundaries, and i n  Section 'c' f u r t h e r  extensions a r e  

made t o  include control  variables and inequal i ty  and f i n i t e  equation 

cons t ra in ts .  Section V I  gives an appl icat ion of t h e  theory of Section 

T- t o  a t h r e e  s tage re-entry problem, and Section V I 1  i s  an appl icat ion 

t o  a s i x  s tage earth-moon problem, f o r  which p a r t i a l  r e s u l t s  a r e  obtained. 

Section IV extends 

J 
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INTRODUCTION 

'The principal field of study and research on this contract has been 

the optimization of multistage rocket trajectories. 

been on needed extensions of basic calculus of variations theory and a 

part on applications of the theory. Some of the results obtained have 

been published in the Progress Reports of the Aero-Astrodynamics Laboratory 

under the following titles: 

A part of the work has 

"An Application of Calculus of Variations to the 
Optimization of Multistage Trajectories," by M. G. Boyce, 
Progress Feport no. 3 on Studies in the Fields of Space 
Flight arid Guidance Theory, MTP-AEF.0-63-12, Feb. 6, 1963. 

"Necessary Conditions for a Multistage Bolza-Mayer 
Problem Involving Control Variables and Having Inequality 
and Finite Equation Constraints," by M. G. Boyce and 
J. L. Linnstaedter, Progress Report No. 7 on Studies in 
the Fields of Space $light and Guidance Theory, NASA 
I'M X-53292, July 12, 1965. 

The following reports were made to contractor conferences of the Aero- 

Astrodynamics Laboratory: 

"Transversality Conditions in the Optimization of 
Multistage Trajectories," by M. G. Boyce, July 18, 1962. 

"A Simple Multistage Problem Having Discontinuities in 
its Lagrange Multipliers," by M. G. Boyce, Dec. 19, 1962. 

"&tensions of the Denbow Multistage Calculus of Variations 
Problem to Include Control Variables and Inequality Constraints, 
by J. L. Linnstaedter, Oct. 22, 1964. 

"The Muitistage Weierstrass and Clebsch Conditions with 
Some Applications to Trajectory Optimization," by M. G. Boyce, 
Feb. 4, 1965. 

"Applications of Multistage Calculus of Variations Theory 
to Two and Three Stage Rocket Trajectory Problems," by G. E. 
Tyler, Aug. 4, 1965. 

In addition to the foregoing reports, informal oral and written reports 

were made from time to time to William E. Miner, former chief of the 
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Ast roQnmics  and Zuidance Theory Division, a n 3  t o  Clyde D. Baker, present  

chief of t h e  d iv is ion .  

Informal consul ta t ions of one t o  t h r e e  days each, some i n  Nashville 

and some i n  Huntsvi l le ,  were held during t h e  t i m e  o f  t h e  contract  with one 

o r  more of t h e  following: 

Grady Harmon, R. M. Chapman, Richard Hardy, W. A. Shaw, 9. Lynn, C. C. 

Dearman, Ben L i s l e ,  J. A. Lovingood, and Clyde Baker. 

t r e a t e d  were transformations of t h e  Lagrange mul t ip l i e r s ,  s e r i e s  expansion 

methods f o r  t h e  so lu t ion  of systems of d i f f e r e n t i a l  equations, s e r i e s  

methods f o r  i n - f l i g h t  correct ions of t r a j e c t o r i e s ,  extensions of t h e  

Denbow mult is tage theory,  and appl icat ions of calculus  of va r i a t ions  t o  

re-entry problems. 

W i l l i a m  E. Miner, Robert S i lbe r ,  Robert W. H u n t ,  

Among t h e  subjec ts  

I n  t h i s  r epor t  t h e  f irst  sec t ion  i s  a summary of necessary condi- 

t i o n s  f o r  one s tage  calculus  of va r i a t ions  problems i n  t h e  Mayer form 

which involve control  var iables .  

The second sec t ion  concerns rocket t r a j e c t o r i e s  with a spec i f ied  

The necessary conditions t i m e  i n t e r v a l  f o r  each s tage  except t h e  l a s t .  

of Section I can be applied t o  each s tage  i n  succession, t h e  t ransver -  

s a l i t y  conditions a t  t h e  end of a s tage  giving i n i t i a l  cmdi t ions  f o r  t h e  

next s tage .  

I n  Section I11 a multistage extension of Zermelo's navigation 

problem i s  given a s  an example t o  i l l u s t r a t e  some fea tu res  of  mult is tage 

problems. 

I n  Section IV a summary of t h e  general  mult is tage theory of C. H. 

Denbow i s  given, with modifications t o  allow d i scon t inu i t i e s  i n  funct ions 

and var iab les  a t  s tage  boundaries. 

Section V extends t h e  multistage theory t o  problems involving 

cont ro l  var iab les  and having inequal i ty  and f i n i t e  equation cons t ra in ts .  

The -$layer formulation i s  used, and t h e  system of d i f f e r e n t i a l  equation 

cons t r a in t s  i s  taken i n  normal form s ince  i n  t r a j e c t o r y  problems t h e  

equations o f  motion a r e  i n  such form. Proof of theorems a r e  omitted i n  

t h i s  repor t  bu t  a r e  given i n  the paper by Boyce and Linnstaedter i n  

Progress Report no. 7. 
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A three stage re-entry rocket optimization problem is treated in 
To avoid computa- Section VI as an example of the theory in Section V. 

tional complexity, simple intermediate point constraints are assumed and 

a f i r s t  order approximation to gravitational attraction is used. 

Section VI1 is an application of the theory of Section V to an 
earth-moon problem in which six stages are determined by intermediate 
point conditions and by specified thrust magnitudes. 

equations are obtained and some vector relations deduced from them. 

Weierstrass condition yields a maximum principle. 

tions are given in matrix form. 

Ner-Lagrange 

The 
Transversality condi- 

c 
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Adaptations of c l a s s i c a l  calculus of var ia t ions  theory t o  one s tage 

Bolza problems containing control var iables  have been made by Hestenes 

and others  (References 6, 7, 8). 
d i t i o n s  a r e  s t a t e d  i n  t h i s  section f o r  t h e  Mayer form of the  problem. 

Yhe r e s u l t i n g  pr inc ipa l  necessary con- 

t independent v a r i  ab1 e 

s t a t e  var iab les ,  functions of t 

control var iables ,  functions of t 

parameters occurring i n  end conditions 

functions of b - defining f i r s t  end point  

functions of b defining second end point  

functions of (t ,x ,y ) defining der iva t ive  cons t ra in ts  

Lagrange mul t ip l ie rs ,  functions of t 

generalized Hamiltonian function 

h (2) function t o  be minimized 

Variables occurring as subscripts w i l l  denote p a r t i a l  der ivat ives ,  

and a superimposed dot w i l l  indicate  d i f f e r e n t i a t i o n  with respect t o  t. A 

s e t  t,x,x,b w i l l  be  c a l l e d  admissible i f  it belongs t o  a given open s e t  R ,  

and a s e t  

admissible and i f  - x ( t )  i s  continuous and - ?( t ) ,x ( t )  a r e  piece-wise con- 

t inuous.  The functions occurring i n  T, E ,  6, and h a r e  assumed t o  have 

continuous p a r t i a l  der ivat ives  of a t  l e a s t  t h e  second order.  

f i( t) ,x(t) ,b w i l l  be an admissible - a r c  if i t s  elements are a l l  

I n  a given c l a s s  of admissible functions and parameters x( t ) ,x( t ) ,b  

. 
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it i s  required t o  f i n d  a s e t  which satisfies t h e  d i f f e r e n t i a l  equations 

and end conditions 

and which minimizes t h e  given function h (2 )  
L e t  C be  an admissible a rc  x ( t ) ,  y ( t ) ,  & which i s  a so lu t ion  

of t h e  problem. Also l e t  C be assumed normal (Ref. 6, p. 15) and t o  

have *?(t) - and i ( t )  continuous. Then C must s a t i s f y  the  following 

four  conditions.  

- 

YEclESMY CDNDI TI ONS 
I. First Necessary Condition. For every minimizing arc  C t h e r e  

e x i s t  unique mul t ip l i e r s  -. I (t) ,  having continuous f i r s t  der iva t ives ,  

such t h a t  t h e  equations (E-der-Lagrange) 
1 

hold along C 

conditions 

H T  
1 lbk 

I J 

e Also t h e  end values of C s a t i s f y  t h e  t r ansve r sa l i t y  

where subscr ip ts  1 and 2 on H ar,d - L ind ica t e  evaluation f o r  

t = t, and t = t,, respectively.  

A s  a consequence of t h e  above Euler-Lagrange equations it follows 

t h a t  a l so  along a minimizing arc C 

dH/dt = 'It 

and hence t h a t ,  i f  H does not involve t e x p l i c i t l y ,  then H i s  

constant  along C . 
11. Weierstrass Condition. .Along a minimizing a r c  C t h e  

inequa l i ty  

H ( t , 5 9 1 1 9 2 )  5 - H(t,x.,y,&) 

must hold for every admissible element (t,x,zj . 
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111. Clebsch (Legendre) Condition. A t  each element (t ,&,x,&) 
of a minimizing arc  C the inequal i ty  

must hold for every set ( Y , , * * - , Y , )  . 
I V .  Second Order Condition. .The second var ia t ion  of h d o n g  a 

minimizing a r c  C i s  non-negative for every v a r i a t i o n  of C s a t i s f y i n g  

t h e  equations of var ia t ion.  

(Cf. R e f .  6, p. 16.) No use of t h i s  condition i s  made i n  t h i s  paper. 
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1 -  

SEcTIOTJ 11. THE OPTIMIZATION OF -hlpn;TISTAGE TRAJECTORIES WHOSE 

STAGES HATE SPECIFIED DITE(AT1ONS 

The problem i s  t o  determirle t h e  f u e l  minimizing t r a j e c t o r y  of  a 

rocket whose f l i g h t  cons is t s  of several  s tages  caused by engine shut- 

o f f s  a t  specif ied times. I n i t i a l  posi t ion and v e l o c i t y  are assumed 

given and t a r g e t  conditions specified.  I n  each s tage t h e  ana ly t ic  

formulation i s  similar t o  t h a t  of Cox and Shaw ( R e f .  l), and we make 

t h e i r  basic  assumptions t h a t  the ear th  can be considered spherical ,  t h e  

inverse square gravi ty  l a w  holds, t h e  only forces  ac t ing  on t h e  rocket 

a r e  t h r u s t  and gravi ty ,  the  direct ion of t h r u s t  i s  t h e  a x i a l  d i rec t ion  

of t h e  rocket,  r o t a t i o n  e f f e c t s  can be ignored, i n  each s tage t h e  magni- 

tude of t h r u s t  and t h e  f u e l  burning r a t e  are constant,  and t h e  center  of 

m a s s  of t h e  rocket i s  f ixed with respect  t o  t h e  rocket.  

The general procedure i s  roughly as follows. Using t h e  f ixed  

i n i t i a l  conditions f o r  t h e  f i r s t  s tage,  determine as solut ions of t h e  

Eder-Lagrange equations t h e  family of minimizing t r a j e c t o r i e s  s a t i s f y -  

i n g  those conditions. The given time t, f o r  t h e  end of t h e  f i rs t  s tage 

w i l l  f i x  on each minimizing t r a j e c t o r y 4  a d e f i n i t e  point .  The t o t a l i t y  

of these  points  w i l l  cons t i tu te  a subspace S, , which w i l l  be t h e  locus 

of i n i t i a l  points  f o r  t h e  second stage.  New values of mass, t h r u s t ,  and 

f u e l  burning r a t e  determine new Euler-Lagrange equations. 

t r a j e c t o r i e s  must s a t i s f y  these new equations i n  t h i s  s tage and a l s o  must 

s a t i s f y  t r a n s v e r s a l i t y  conditions f o r  i n i t i a l  po in ts  i n  subspace S, . 
Through each point  of 

and on each of these  t r a j e c t o r i e s  t h e  given time 

second s tage w i l l  f i x  a d e f i n i t e  point.  

b e  subspace S2 

t h e  t h i r d  s tage,  and t ransversa l i ty  conditions w i l l  again determine a 

family of minimizing t r a j e c t o r i e s ,  one issuing from each point  of S2 
This procedure i s  repeated u n t i l  i n  t h e  f i n a l  s tage t h e  mission object ives  

Minimizing 

S, these conditions determine a unique t r a j e c t o r y ,  

t, f o r  t h e  end of t h e  

The t o t a l i t y  of these points  w i l l  

which i n  t u r n  w i l l  be t h e  locus of i n i t i a l  points  f o r  

. 
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w i l l  impose c r i t e r i a  for se lec t ing  a pieced t r a j e c t o r y  sa t i s fy ing  t h e  

given i n i t i a l  conditions and extending through t h e  several  s tages .  

Closed form so lu t ions  a r e  not  a t t a inab le  i n  most cases. 

would seem possible  t o  extend the  s ing le  s tage  adaptive guidance mode 

computational procedures through several  successive stages.  

However, it 

FORWEATION OF TXE PROBLEN 

A plumbline coordinate system i s  used (Ref. 1, p. 108; R e f .  2, 

p. ll), with t h e  center  of mass of t h e  rocket designated by 

x = (x1,x2,x3) and i t s  veloci ty  by u = (u ,u2>u3). The time t is  

taken as  indepent var iab le ,  and 

- F = (O,F,O), having i t s  magnitude F constant f o r  each s tage,  i s  

assumed t o  be d i r ec t ed  along the axis of t h e  rocket.  

of  t h e  rocket axis r e l a t i v e  t o  t h e  plumbline system i s  designated by 

L = $l,x2Jk a r e  t h e  p i t ch ,  r o l l  and yaw angles,  

respect ively.  

-g 

1 - - 
u = dx/dt. The t h r u s t  vector - - 

The o r i en ta t ion  

where 

If ? denotes t h e  g rav i t a t iona l  acce lera t ion  and [A] t h e  

matrix for transformation of  vectors from t h e  mis s i l e  t o  t h e  plumbline 

coordinate system, then Newton's second l a w  gives as equations of motion 

of  t h e  rocket 

- ' F [ A ] + y  , & = u .  - (1 ) -g - u = m  - 
I n  terms of p i t ch ,  roll, and yaw, t h e  matrix A has t h e  following form 

(Ref. 1, p. 108; Ref. 2,  p. 26): 

CP = cos y1 
SP = s i n  $l 

SR 1 etc .  

g2 w i l l  be 

r GPCR SPrn 

-SPCf - msRSk' CPCY -* SPSRSV CRSY 

SPSY - CPSIICY - 2 S V  - SPSECY CRCY 
A =  i 

Since r o l l  e f f e c t s  a r e  t o  be ignored, t h e  roll 

assumed i d e n t i c a l l y  zero. Hence CR = 1, SR = 0, and t h e  var iab le  '& 
may be dropped. Since f u e l  consumption is  monotonically increasing with 

t ime,  minimization of t i m e  o f  f l i g h t  i s  equivalent t o  minimizing fue l  

consumption. 

mum t i m e  standpoint.  

It i s  more convenient t o  t reat  t h e  problem from t h e  mini- 
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I n  t h e  terminology of the  general  theory of Section I we now have 

s t a t e  var iab les  u1,u2,u3,x1,x2,x3, cont ro l  var iab les  $, and 7$ , 
a d  independent va r i ab le  t . The funct ion t o  be minimized, t h e  funct ion 

h ( 2 )  , i s  simply t h e  f i n a l  time tf . Hence tf i s  one of t h e  parameters 

i n  b ; other  parameters may occur i n  t h e  i n i t i a l  and end conditions and 

i n  s tage  boundary conditions.  The mass m i s  assumed a known funct ion of 

t i n  each s tage  so i s  not included i n  t h e  s t a t e  var iables .  

Thus t h e  problem i s  t o  f i n d  i n  a c l a s s  of admissible s e t s  of 

funct ions - u ( t ) ,  x ( t ) ,  #t) and parameters 12. a s e t  t h a t  w i l l  s a t i s f y  

t h e  d i f f e r e n t i a l  equations (1) and t h e  given end conditions and t h a t  w i l l  

minimize the  f i n a l  time tf 

FIRST STAGE 

Let t he  time i n t e r v a l  f o r  t he  first s tage  be to < t  < t,, and - =  
t h e  i n i t i a l  conditions,  

i n  A and using ~ r - ~ x  f o r  x , where c1, i s  t h e  g rav i t a t iona l  con- 

s t a n t  times t h e  mass of the  earth,  we get equations (1) i n  t h e  form 

Y ( t o )  = I+ g(to) = % On Pu t t ing  & = 0 

-@; - 

fil = -~~-'SPCY - pr-3x1 

c2 = F~-'CPCY - 
fi = F~-'SY - ~ r - ~ x ,  

XI  = u1 

x2 = u2 

3 

x3 = u3 

I n  order t o  apply the  necessary conditions of Section I, we now 

def ine  a generalized Hamiltonian 

H = L,(-Frn-lSFCY .- ~ r - ~ x ~ )  + L,(Fm-lCPCY - ~ r - ~ x , )  

+ L ~ ( F ~ " ' s Y  - p,r-3x3) + L ~ U ~  + L ~ U ~  + L ~ U ~  . 
By condition 1, Section I, t h e  Ner-Lagrange  equations a r e  
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These formulas give t h e  s i x  equations (2) plus  t h e  following e ight :  

L, = 'L, 

L,CpCY + L2SPCY = 0 

(4) 
L SPSY - L CPSY + L CY = 0 
1 2 3 

Assuming 

w e  g e t  from equations (4) t h a t  

CY # 0 and l e t t i n g  D2 = Lf + L z  , E* = Ls + L z  i L: , 
D > O , E > O  

t a n  d, = - L ~ / L ~  , SP = -LJD , cp = L ~ / D  , 
t a n  = L ~ / D  , SY = L ~ / E  , CTY = D/E , 

t h e  choice of  signs i n  SP,CP,SY,CY 
and Clebsch conditions,  as w i l l  be shown i n  t h e  next sect ion.  From ( 5 )  it 
Tollows t h a t  t h e  t h r u s t  vector i n  t h e  plumbline system can be expressed as 

being a consequence o f  t h e  Weierstrass 

F [A] = F(-SPCY,CPCY,SY) = F(L /E,L /E,L /E) . 
1 2 3 

- 
Equations ( 5 )  may be used t o  eliminate t h e  control  var iables  from 

equations (2), thus giving, together with equations (3), a system of  12 

d i f f e r e n t i a l  equations of t h e  f i r s t  order i n  12 dependent variables.  

system may be wr i t ten  as  s i x  equations of second order ,  which i n  vector 

no ta t ion  are 

"his 

where 2 denotes t h e  vector (L1,L2,L3> 
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Although t h e  r e s u l t  i s  not u t i l i z e d  i n  t h i s  paper, it i s  of i n t e r -  

est t o  note t h a t  t h r e e  f i r s t  i n t e g r a l s  of t h e  system (6)  can be r e a d i l y  

obtained by t h e  following device. 

(6) by E and t h e  second by x and add t h e  r e s u l t i n g  equations t o  g e t  

Cross multiply t h e  first of equations 

- - 
I .  

- - - _  E Y , j r ' + x X E = O .  

This now y i e l d s  

where _M i s  a constant vector,  s ince t h e  der iva t ive  with respect  t o  t 
of t h e  l e f t  member of (8) i s  the l e f t  member of (7). 

The equations (2) and (3) ,  a f t e r  elimination of the  control v a r i -  

ables ,  or, equivalently,  system ( 6 ) ,  w i l l  have a six-parameter family of 

so lu t ions  s a t i s f y i n g  t h e  given i n i t i a l  conditions 

However, s ince t h e  equations are homogeneous i n  t h e  L ' s ,  i f  

L ( t )  i s  a solut ion,  then so i s  u ( t ) , x ( t ) , c L ( t )  for any non-zero con- 

s t a n t  c . Thus, i f  i n i t i a l  values of t h e  L ' s  are taken a s  parameters, 

only t h e i r  r a t i o s  a r e  s ign i f icant  i n  determining 

value of one 

signed a value a t  t = t 
t h e r e  i s  a five-parameter family of t r a j e c t o r i e s  s a t i s f y i n g  t h e  E u l e r -  

Lagrange equations and having the given i n i t i a l  values. 

denote t h e  parameters, t h e  equations of t h e  family may be wr i t ten  

- u ( t o )  = +z(to) = rr, . 
u ( t ) , z ( t ) ,  - 

- - - - 

u ( t ) , z ( t )  . Hence t h e  - 
L may be f ixed ,  o r  some function of the L ' s  may be as- 

Thus say L:(to) + L z ( t o )  + L z ( t o )  = 1 . 
0 '  

5 
If b, ,b 

Each of these  curves i s  t h e  path of l e a s t  time from t h e  i n i t i a l  

po in t  t o  any o ther  point  on it, assuming t h a t  a minimum e x i s t s  and t h a t  

on ly  one of t h e  curves jo ins  the two points .  

inology r e f e r s  t o  t h e  seven dimensional space 

dimensional physical  space.) Putting t = t, gives a point  on each 

(The geometrical term- 

t , u , x  - -  and not t o  t h r e e  

curve, and t h e  t o t a l i t y  of such points  cons t i tu tes  a subspace s, . If 

S, i s  considered as a given locus of var iab le  end-points f o r  t h e  first 

s t a g e ,  then,  s ince  t has constant value t, on S, , each t r a j e c t o r y  



i s  a t i m e  minimizing t r a j e c t o r y  from t h e  i n i t i a l  po in t  t o  , and hence 

must s a t i s f y  t h e  t r a n s v e r s a l i t y  conditions a t  This property w i l l  be 

u t i l i z e d  i n  the discussion of cont inui ty  proper t ies  of t he  Lagrange m u l t i -  

p l i e r s .  

S1 
S1 . 

THE WEIEFSTRASS AND CLEBSCH CONDITIONS 

We now show t h a t ,  with t h e  choice of s igns adopted i n  ( 5 ) ,  t h e  

necessary conditions I1 and I11 of Section I a r e  s a t i s f i e d  by so lu t ions  

of equations ( 2 ) ,  ( 3 ) ,  (4) .  
denote a r b i t r a r y  values of t h e  control var iables .  

For t he  Weierstrass t es t  l e t  circumflexes 

Then 

H ( t , u , x p m  - H(t,u,x,?,L) 
A l l  0-A 

= Fm"l(-L 1 SPrn + L 2 CPm + L3SY + L,SPCY - L*cpcY - L p )  

=: %-'(E + L SI?& - L cfj& - L 3 S?) > 0 , 
1 2 

a s  i s  implied by t h e  general  inequal i ty  

(a2 + b2 + c2)1'2 > - I (a  s i n  A + b cos A )  COS B + c s i n  B , 
which holds f o r  all real  values of a ,  b ,  c ,  A, B 

For t h e  Clebsch t e s t ,  t h e  matrix of t h e  quadrat ic  form involved i s  I LISPCY - L CPCY 
2 I L,CPSY + L2SPSY I *  L CPSY + L SPSY 

1 2 

LlSPCY - L2cPcY - L3SY 

By v i r t u e  of  equations ( 5 )  t h i s  becomes 

p -:] > 

which implies t h a t  t h e  quadrat ic  form i s  negative de f in i t e .  

There a re  i n  all four  sets of values of SP, CP, SY, CY i n  terms 

of t h e  L ' s  t h a t  w i l l  s a t i s f y  equations (4) .  Two of them reverse  t h e  in -  

equa l i ty  s igns i n  conditions I1 and 111, but  t he re  i s  one o ther  set besides  

t h a t  given i n  ( 5 )  t h a t  s a t i s f i e s  conditions I1 and 111. It can be got from 

( 5 )  by replacing D by -D . This amounts t o  changing gl t o  & + IT 
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and i3 t o  

d i rec t ion  of t h r u s t  a s  before. 

II - $3 , and it i s  found t h a t  t h i s  ac tua l ly  produces the  same 

SECOND AND SUBSEQvENrl7 STAGES 

For t h e  second s tage  t h e  range of t i s  t < t 5 t2 . The i n i t i a l  - 
point  i s  required t o  be i n  

put t ing  t = t, i n  (9): 
S, , t h e  equations of which a r e  obtained by 

t h e  s i x  functions i n  t h e  r i g h t  members being denoted by X (b)  t o  con- -1 - 
form with the  notat ion i n  Section I. The funct ion T,(b) i s  the  con- 

s t a n t  t, . 
The d i f f e r e n t i a l  equations of motion are of t h e  same form as f o r  

t h e  first s tage,  although F and m have d i f f e r e n t  values.  To allow f o r  

poss ib le  d i scon t inu i t i e s  i n  t h e  L ’ s  , w e  denote t h e i r  r i g h t  hand limits 

a t  t, by L ( t l  +) . There a r e  f i v e  t r ansve r sa l i t y  conditions (Condition 

I,  Section I)  which must be s a t i s f i e d  a t  t = t, : 

Since these  equations a re  homogeneous i n  t h e  L ’ s  

t i o n s  analogous t o  ( 2 ) ,  ( 3 ) >  and (4), it follows t h a t  f o r  t he  determina- 

t i o n  of u ( t )  and x ( t )  again only t h e  r a t i o s  of t h e  L ’ s  a r e  signifi- 

cant .  Thus again the re  w i l l  be an eleven parameter family of minimizing 

t r a j e c t o r i e s .  When values a re  given t o  t h e  b ’ s  t o  f i x  a point  i n  S, , 
t h e r e  w i l l  be s i x  values 

t o  determine t h e  eleven parameters. 

minimizing t r a j e c t o r y  i ssu ing  from each point  of L e t  t h e  equations 

of t hese  t r a j e c t o r i e s  be expressed by t h e  same equations (9) as f o r  t h e  

first s tage  except t h a t  now t h e  range f o r  t i s  from t t o  t2 e 
Put t ing  

t h e  locus  of these  poin ts  w i l l  be a subspace 

, and so a r e  t h e  equa- 

- - 

u(t,,) , &(t ) and f i v e  t r ansve r sa l i t y  conditions 
1 
This i n  general  w i l l  f i x  a unique 

- 

S1 . 
1 

t = t2 w i l l  determine a d e f i n i t e  point  on each t r a j ec to ry ,  and 

S2 with equations 



. 

Note t h a t  again t h e  t r ansve r sa l i t y  and o ther  conditions involving t h e  end 

poin t  need not be  used t o  determine t h e  f i v e  parameter family of t r a j e c -  

t o r i e s  but  only t h e  conditions a t  t h e  i n i t i a l  point.  

For subsequent s tages  t h e  procedure i s  l i k e  t h a t  f o r  t h e  second 

stage.  

subspace S2 and t r ansve r sa l i t y  conditions involving X (b) and L ( t 2 + )  

would be used. 

The i n i t i a l  point  f o r  the t h i r d  s tage  would be r e s t r i c t e d  t o  

-2 - 

The computational procedure given by Cox and Shaw (Ref. 1, p.118) 

could be used i n  t h e  f i r s t  stage.  

o ther  s tages  t o  approximate t h e  p a r t i a l  der iva t ives  of t h e  

and t o  solve t h e  t r ansve r sa l i t y  equations. 

I n  t h e  f i n a l  s tage  t h e  mission object ive must be f u l f i l l e d  a t  t h e  

Modifications would be needed i n  t h e  

X ( b )  funct ions - -  

end point .  Since the re  i s  l i t t l e  hope for closed form solut ions,  t h e  pro- 

posed procedure i s  t o  estimate i n i t i a l  conditions and use them t o  extend a 

so lu t ion  by approximate in tegra t ion  methods through the  severa l  s tages .  

t h e  objec t ives  a r e  not a t t a ined ,  make new estimates of t h e  i n i t i a l  conditions 

and new computations of a minimizing t r a j ec to ry ,  continuing thus u n t i l  a 

t r a j e c t o r y  i s  obtained t h a t  achieves t h e  desired object ives  with s u f f i c i e n t  

accuracy. 

If 

C 0 N T I " Y  PROPEEEES OF THE L A G M G E  MULTIPLIERS 

I n  each s tage t h e  t r a j e c t o r i e s  which a r e  without corners and which 

s a t i s f y  t h e  Mer-Lagrange equations w i l l  have Lagrange mul t ip l i e r s  t h a t  

a r e  continuous and d i f f e ren t i ab le  ( R e f .  3 ,  pp.202-204; R e f .  6,p. 12) .  

However, on passing from one s tage  t o  t h e  next,  t h e r e  are d i scon t inu i t i e s  

i n  t h e  funct ions def ining fi . From equations ( 2 )  it follows t h a t  t he re  

w i l l  be  corners f o r  t h e  functions 2 , and hence d iscont inui t ies  might be 

expected i n  t h e  L's But t h e  functions def ining f and L are 

- 

- - 
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continuous i n  t, u, x and have continuous p a r t i a l  der iva t ives .  $Thus con- 

t inuous so lu t ions  f o r  the  L ' s  can be obtained by tak ing  u continuoils 

across  boundaries, provided the t r ansve r sa l i t y  conditions can be  s a t i s f i e d .  

I n  obtaining t h e  family of so lu t ions  of t h e  Ner -Lagrange  equations 

- -  
- 

i n  each s tage  the homogeneity of t h e  equations i n  t h e  L ' s  was u t i l i z e d  

t o  decrease t h e  number of parameters by one, say by assigning an i n i t i a l  

value t o  one of t h e  L ' s  . 
t h e  f i v e  t r ansve r sa l i t y  conditions f o r  parameters b l ,*** ,b5  , namely, 

A s  remarked i n  t h e  discussion of  t h e  f i rs t  s tage,  

a r e  s a t i s f i e d  on S, . These conditions a r e  t h e  same a s  conditions (11) 

i n  - L(t +) which hold for S, as locus of i n i t i a l  po in ts  i n  s tage  two. 

Hence L 1 1  (t -),..., L,(t,-) and L l ( t l+ ) ,*** ,L6( t l+ )  are proport ional .  

By assigning equal values t o  one p a i r  from the  two s e t s ,  a l l  can be made 

continuous a t  t, . 
The t r ansve r sa l i t y  condition involving the  f i n a l  t i m e  as  parameter 

% *  i n  each s tage  i s  not homogeneous i n  t h e  L ' s  because of t h e  term 
k 

This  condition would make t h e  s e t  of L ' s  unique and not necessar i ly  con- 

t inuous across  t h e  boundary; however, it i s  not e s sen t i a l  t o  use t h i s  con- 

d i t i o n  for t h e  determination of the t r a j e c t o r y  equations. Hence it i s  

poss ib le  t o  obtain Lagrange mul t ip l ie rs  t h a t  a r e  continuous through t h e  

severa l  s tages  and t o  use t h e i r  r a t i o s  a t  t h e  i n i t i a l  point  t = t a s  
0 

parameters b,, ... ,b5 f o r  a f i v e  parameter family extending through a l l  

t h e  stages.  
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SECTION 111. A MuTTISTAC-E >:Ab IGATION PROBLEM 

A simple form of Zermelo's navigation problem (Eef 4)  extended 

t o  multiple s tages ,  serves t o  i l l u s t r a t e  some fea tures  of t r a j e c t o r y  pro- 

blems. 

follow Cica la ' s  formulation (Ref. 5 ,  p.19) 

a plane water surface. 

t h e  plane surface,  and t h e  boat i s  considered a point  (x,y) . The water 

current  i s  assumed t o  have known veloci ty  components u and v as  

functions of x and y and t h e  time t . Let t h e  ve loc i ty  vector of 

t h e  boat r e l a t i v e  t o  t h e  water make an angle 8 with t h e  pos i t ive  

x-axis and assume t h a t  t h e  magnitude of t h e  ve loc i ty  vector i s  a known 

constant i n  each stage. The path of t h e  boat i s  determined by t h e  control  

var iab le  8 , and t h e  problem is  t o  f i n d  8 as a function of t so as t o  

minimize t h e  t i m e  tf 
point  (xf,yf) t h a t  i s  assumed remote enough t o  requi re  t h r e e  stages.  I n  

order  t o  ge t  a problem t h a t  w i l l  have an e a s i l y  obtained closed form solu- 

t i o n ,  we take t h e  water ve loc i ty  components t o  be constants and choose t h e  

coordinate system so t h a t  u = 0 , v = a . 

Zermelo s t a t e d  h i s  problem f o r  a i r  f l i g h t  i n  a plane, but w e  

and consider a motor boat on 

A rectangular coordinate system i s  associated with 

for t h e  boat t o  go from t h e  o r i g i n  t o  a specif ied 

The problem then i s  t o  f i n d  functions 

A = v cos e 
x ( t ) ,  y ( t ) ,  e ( t )  such t h a t  

$ = a + v s in  e ; (1 1 
v = v f o r  0 5 t < tl; v = v f o r  tl 5 t < t2; v = v f o r  t < t: 

1 - 2 - 3 2 =  

x(0) = y(2)  = 0 ; X ( t f )  = Xf , Y ( t f )  = yf; 

and such t h a t  tf i s  a minimum. 

A s  i n  Section I, define the generalized Hamiltonian 

H = L v COS e + L2(a  + v1 s i n  e )  . 
1 1  

From t h i s  II t h e  Mer-Lagrange equations a r e  found t o  be 
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f = v1 cos e , j ,  = a + v1 s i n  e .7 

C 1 = o ,  5 2 = o ,  -E 1 s i n e + 5 2 c o s e = ~ .  

- L21 . It then 

i s  constant,  and in tegra t ion  of t h e  f i rs t  two of t h e  

Hence L, and L2 a r e  constants,  say Z1 - T  - dll, L - 
2 

follows t h a t  8 

above equations gives 

x = (vl cos e ) t  , y = (a + v1 s i n  e j t  , (3 1 
on using i n i t i a l  conditions x = y = 0 when t = 0 . Thus paths of mini- 

mum t i m e  a r e  s t r a i g h t  l i n e s .  

If our problem were a one-stage problem with end point (xl,yl) and 
t i m e  t, 

L,, and LZ1 t h e  following equations 

t o  be a minimum, we would have f o r  t h e  determination of 8 ,  t, , 

x 1 = (vl COS e) t l  , y, = (a + v1 s i n  e j t ,  , 
-L 11 s i n  8 + L21 cos 8 = 0 , 

(4) 

( 5 )  

plus t h e  t r a n s v e r s a l i t y  condition 

L 11 v 1 cos e + ~ ~ ~ ( a  + v1 s i n  e) = 1 . (6) 

Equation (6) i s  found from the t r a n s v e r s a l i t y  equation i n  Section I by 

p u t t i n g  

k = l , b  = t l , T  = O , T  = t  1’ Xll = 0, XZ1 = 0 ,  X12 = x x - - y,, h t,. 
1 1 2 1’ 22 

L = cos e/(vl + a s i n  e ) ,  2 = s i n  e& + a s i n  e) . (7) 11 21 

Now if we consider (xl,yl) var iab le  and inquire  a s  t o  t h e  locus o f  

such points  each of which i s  reached i n  a minimum t i m e  equal t o  

g e t  from (4), with 8 variable ,  t h a t  t h e  locus of (xl,yl) i s  t h e  c i r c l e  
t, , we 

with center  ( O , a t l )  and radius  v l t l  



SECOPE STAGE 

The locus of i n i t i a l  points f o r  t h e  second s tage i s  t h e  c i r c l e  

mentioned i n  t h e  preceding sentence. We w r i t e  it a s  

x 1 = (vl cos a)t,, y, = (a + v1 s i n  ajt, ( 8 )  

with t h e  parameter a replacing t h e  8 of equations (41, since w e  s h a l l  

continue t o  use 8 as the  control var iable .  The d i f f e r e n t i a l  equations 

of cons t ra in t  f o r  t h i s  s tage a r e  t h e  same a s  f o r  t h e  f i r s t  s tage except 

t h a t  v replaces  v . 
2 1 

The Euler-Lagrange equations are as before, with v replacing 
2 

L1 and L2 a r e  constant, say 'i = - L = L  . 
-1 -12 2 22 

v , and hence 

It follows t h a t  8 i s  constant.  

3 

If t h e  end point  f o r  t h e  second s tage i s  considered f ixed a t  

a and t2 (x2,y2) , then t r a n s v e r s a l i t y  conditions for parameters a r e  

L v t  s i n a - L  v t  e o s a = O >  

L v cos e + L22(a + v s i n  e) = 1 . 
12 1 1 22 1 1 

12 2 2 

(9) 

The f irst  of these  equations, together with t h e  l a s t  of t h e  Eder-Lagrange 

equations, implies t h a t  6' = a! . Then, from t h e  p a i r  of equations (9)? 
it follows t h a t  

L = cos e/(v + a s i n  e ) ,  L~~ = s i n  e/(v + a s i n  e) . (10) 

Thus L and L are not equal t o  Lll and L21 , ind ica t ing  discon- 

12 2 2 

12 22 

t i n u i t i e s  i n  t h e  mul t ip l ie rs  a t  stage boundaries. However, t h e  control  

v a r i a b l e  8 i s  continuous, being i n  f a c t  t h e  same constant i n  t h e  two 

s tages .  

On in tegra t ing  t h e  Ner-Lagrange equations f o r  x and y and us- 

i n g  (8) as i n i t i a l  conditions, one f i n d s  t h a t  

x = (V COS e ) t  + (vl - v2)tl  COS e 
2 

y = (a + v s i n  e ) t  + (vl - v2)tl  s i n  6 e 

2 
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. 

For each constant 8 , t h e  path i s  a s t r a i g h t  l i n e .  

Now consider t h e  locus of end points  (x2,y2) t h a t  w i l l  each be 

reached i n  minimum t i m e  t . Fixing t = t i n  (11) and considering 

8 var iable  shows t h e  locus t o  be t h e  c i r c l e  with center  (09at2)  and 

2 2 

radius  vltl + v2(t2 - tl) 

THIRD STAGE 

With t h e  c i r c l e  of the  preceding sentence as locus of i n i t i a l  

points ,  t h e  end point  i s  required t o  be (xf ,yf)  and t i m e  tf is  t o  
be a minimum. 

s t r a i g h t  l i n e  w i t h ' t h e  control  var iable  constant and equal t o  i t s  value 

i n  t h e  preceding s tages .  The new equations for x and y are 

I n  t h e  same way as before t h e  path i s  shown t o  be a 

By put t ing  t h e  given values 

t h e  minimum t i m e  t = tf and for t h e  constant control  angle 8 . Then 
xf,yf i n  equations (w), one can solve f o r  

equations (11) with t = t 

t h e  corner points  (xl,yl) and (x2,y2) . 
x = x 2' Y = Y, and equations (8) determine 

2' 

CONCLUSIONS 

This problem i l l u s t r a t e s  the extension of a t r a j e c t o r y  across s tage 

boundaries where t h e  d i f f e r e n t i a l  equations of constraint  a r e  discontinuous. 

The e f f e c t  of t h e  homogeneity i n  t h e  Lagrange mul t ip l ie rs  i s  similar t o  t h a t  

i n  t h e  more general problem. 

The unique Lagrange m u l t i p l i e r s  t h a t  s a t i s f y  t h e  Euler-Lagrange 

equations and t h e  t r a n s v e r s a l i t y  conditions of I ,  Section I, a r e  discon- 

t inuous a t  s tage boundaries. However, t h e  r a t i o  L. /L1 = t a n  8 i s  t h e  

same f o r  each stage. The equations containing L ' s  a r e  homogeneous i n  

t h e  L ' s  , except t h a t  t h e  t ransversa l i ty  condition computed f o r  t h e  f i n a l  

t i m e  as parameter i n  each s tage is not homogeneous. 

condition i s  not needed t o  determine the  family of minimizing t r a j e c t o r i e s  

2 

But t h i s  t r a n s v e r s a l i t y  
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which s a t i s f y  i n i t i a l  conditions i n  each stage.  That is ,  i n  order t o  ob- 

t a i n  a pieced t r a j e c t o r y  extending through t h e  several  s tages ,  o n l y  t h e  

r a t i o  of the  L ' s  i s  needed, and, s ince t h e  r a t i o  i s  preserved, t he  L ' s  

may be chosen continuous. 
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SECTION Id. ON MULTISTAGE PROBLIBE HAVING DISCONTINLTEIES AT 

STAGE BOIJITDARIES 

Discont inui t ies  w i l l  be  allowed i n  t h e  funct ions appearing i n  

t h e  d i f f e r e n t i a l  equation constraints  and i n  t h e  dependent var iab le  

coordinates def ining admissible paths.  

var iab le .  

t o  be a p a r t i t i o n  set i f  and only i f  to < tic..* C t 
denote t h e  i n t e r v a l  to 

f o r  a = 1, .*., p - 1 and ta 
t h e  s e t  of funct ions (z,(t) ,  ..*, z N ( t ) ) ,  where each z,(t), Q! = 1, 

..., N,  i s  continuous on I except possibly a t  p a r t i t i o n  poin ts  

Let t be t h e  independent 

For f ixed  p, def ine  a set of var iab leg( to ,  tl, 
tP) 

Let I 
P - 

t < t and I - - P  a 

5 t 5 t a 

the  subin terva l  ta,l < t < ta - 
f o r  a = p a  Let z ( t >  denote - 

A t  thetje po in ts  right and l e f t  l i m i t s  z (t-), z,(t,), + tlJ ..e t 
... z ( t  p-1 ..., p - 1. 

+'-;'are assumed t o  ex i s t  and we l e t  z a ( t j )  = z,(t,), 1, b = 1, 

The problem w i l l  be t o  f ind i n  a c l a s s  of admissible a rc s  

t o < t < t  - - p' 

s a t i s f y i n g  d i f f e r e n t i a l  equations 

(1 ) $; (t,z,;) = 0,  t in  I ~ ,  B = 1, ..., M <  N, 

and end and intermediate poin t  conditions 
+ 

fy(to, , t P , Z  ( t o )  '2 (t;) ,z ( t l ) ,  ,z ( t  1) = 0,  P 
K < - (N+l) (p+l ) ,  

(2 1 
r = 1, 

one tha t  w i l l  minimize 

t 

Let R a be an open connected s e t  i n  t h e  2N+1 dimens iona l  

( t , z , ? )  space whose pro jec t ion  on t h e  t-axis contains  In. The 
u a 

B funct ions $J 

t i v e s  i n  R and each matrix a 

a r e  required t o  have continuous t h i r d  p a r t i a l  der iva-  
t t 

i s  assumed of rank M i n  R . 
a 



2'i 

1 

L e t  S denote an open connected set i n  the  2Np+p+l d imens iona l  space 

of points  ( t o  ,..., t ,z(to),z(t;),z(t,),...,z(tp)) + i n  which t h e  functions 
P 

f , p = 0,  1, ..., K have continuous t h i r d  p a r t i a l  der iva t ives  and t h e  

matrix 
P 

is  of rank K+1. 
1 

An admissible s e t  i s  a s e t  (t,z,;) i n  R f o r  some a=l ,  ..., p. 
l a 
a 

- 
An admissible subarc C 

(t,z,;) an admissible set and such t h a t  z ( t )  i s  continuous and i(t) 
i s  piecewise continuous on I An admissible a r c  E i s  a p a r t i -  

t i o n  s e t  

a = 1, ..., p,  such t h a t  t h e  set  (to,..*,t , z ( t  ) ,z(t ;) ,z(t l)  ,..., z ( t p ) )  

i s  i n  S . 

i s  a s e t  of functions z ( t ) ,  t on Ia, with each 

1 

a 1 

(to, . ,t ) together with a s e t  of admissible subarc? Ca, P + 
I P O  

Mult ipl ier  R u l e .  An adniss ible  a rc  E' t h a t  s a t i s f i e s  equations 

(l), (2), (3) i s  s a i d  t o  s a t i s f y  t h e  mul t ip l ie r  r u l e  i f  t h e r e  e x i s t  con- 

s t a n t s  e not a l l  zero and a function 
P 

F(t,z, i ,X) = h&$(t,z,i), t i n  Ia, 

with mul t ip l ie rs  $(t) continuous except possibly a t  corners o r  d i s -  

cont inui t ies  of 

lowing equations hold: 

E ' ,  where l e f t  and r i g h t  limits e x i s t ,  such t h a t  t h e  f o l -  

( 5 )  
a t 

F. =A F d t  + ca, t i n  Ia, 
a-1 za 

A 

0 ,  

= 0 ,  



L; I = 0. 
a t  

P 

Every minimizing a r c  must s a t i s f y  the mul t ip l i e r  r u l e .  - - 
An extremal i s  defined t o  be an admissible a r c  and set of mul t ip l i e r s  

s a t i s fy ing  equations (1) and ( 5 )  and such t h a t  the  functions 

2 a ( t ) ,  1 (t) 
t i t i o n  poin ts ,  where f i n i t e  l e f t  and right l i m i t s  e x i s t .  

have continuous first der iva t ives  except possibly a t  par- 
8 

An extremal i s  

- non-singular i n  case t h e  determinant 

i s  d i f f e ren t  from zero along it. 
p l i e r s  s a t i s fy ing  t h e  mul t ip l ie r  rule i s  ca l l ed  normal i f  

t h i s  value of eo t h e  set of mul t ip l ie rs  i s  unique. 

An admissible a r c  with a s e t  of m u l t i -  

With eo = 1. 

Weierstrass Condition. An admissible a r c  E'  with a set  of multi-  
i s  s a i d  t o  s a t i s f y  t h e  Weierstrass condition i f  l i e r s  1 (t) - B  

- (fk - i )F. ( t , z , i ,X)  2 0 
za 

holds a t  every element ( t , z , i , X )  - of E'  f o r  a l l  admissible sets 
s a t i s f y i n g  t h e  equations fla = 0. B Every normal minimizing a r c  

must s a t i s f y  t h e  Weierstrass condition. 

Clebsch Condition. An admissible a r c  E '  w i t h  a s e t  of mu l t ip l i e r s  

h S ( t )  i s  sa id  t o  s a t i s f y  the  Clebsch condition i f  



holds at every element (t,z,i,h) - of E' for all sets (sl, ...,%) 
satisfying the equations 

a (t,Z,2) sa = 0. %Ga 
Everx normal minimizing arc must satisfy the Clebsch condition. -- - 



SECTION :<. ON I~LJLTISTAGE PRGBLEMS INVOLVING CONTROL VARIABLES 
AND HAVING INEQUALITY AND FINITE EQUATION CONSTRATNTS 

By the introduction of new variables  and by notat ional  

transformations t h e  theory of Section I l c a n  be u t i l i z e d  t o  es- 

t a b l i s h  necessary conditions for  the  more general formulation of 

t h i s  section. 

define a s e t  of var iab les  (to, ..., t ) 
t 

denote t h e  i n t e r v a l  

As before,  l e t  t b e  the  independent var iab le  and 

contained i n  the  range of 

0 P 

P 
t o  be a p a r t i t i o n  set i f  and only if t 

to - < t - < t p 7  and l e t  

< tl < . .. < t . 
Ia denote t h e  sub-interval 

Let I 

< t  < t a  f o r  a = 1, ..., p - 1 and ta l < t l t  f o r  a = p. 
a ta - l  - c 

L e t  x ( t )  denote the  set of functions (xl (t) , ..., xn ( t ) ) .  
For each i, i = 1, ... , n,  assume x . ( t )  t o  be continuous on I 
except possibly a t  p a r t i t i o n  points where 
f i n i t e  l e f t  and right l i m i t s  ex is t ;  denote these  limits by xi($) 

and xi ($1, respect ively.  The amount of d i scont inui ty  of each 

member of x ( t )  

1 
tb, b = 1, ..., p - 1, 

a t  each p a r t i t i o n  point  w i l l  be assumed known, and 

we w r i t e  

-t w i t h  each d a known constant. Also l e t  xi(tb) = xi($), Thus 
x .  ( t )  i s  continuous a t  t if and only if dib = 0. 

piecewise continuous on I, j = 1, ..., m, f i n i t e  d i scont inui t ies  being 

i b  

1 b 
Let y ( t )  denote the  set (y l ( t ) ,  y m ( t ) ) ,  where Y (t) i s  

J 

allowed between, as w e l l  as a t ,  p a r t i t i o n  points .  

of the  problem the  

and w i l l  not occur i n  t h e  function t o  be minimized nor i n  the  end and 

intermediate point  constraints .  

var iab les ,  while  t h e  x .  ( t )  are  c a l l e d  s ta te  var iables .  

I n  t h e  formulation 

y .  (t) w i l l  occur only as undifferent ia ted var iab les  
J 

Such var iab les  are called control  

1 
The problem is  t o  f i n d  i n  a c l a s s  of admissible arcs  

which s a t i s f y  d i f f e r e n t i a l  equations 

a = 1, ..., p y  i = 1, ..., n, j; = Li(t ,x ,y , ) ,  a t i n  Ia, i 



f i n i t e  equations 

g = 1, * * * ,  9, 

inequal i t ies  

N;(t,x,Y) ,> 0,  h = 1, ..., r, 9 + r S m ,  
and end and intermediate point  conditions 

k = 1, ..., s < (n + 1) (p + l), 

one t h a t  w i l l  minimize 
+ 

Jo(to, = * - )  t 

In  order t o  s t a t e  prec ise ly  t h e  propert ies  of t he  functions in -  

x ( to ) ,  x(t;), x( t l ) ,  - 9 . )  x ( t p ) ) *  
P’ 

be an open connected set i n  t he  m + n + 1 Ra volved i n  the problem, l e t  

dimensional ( t ,x ,y)  space whose project ion on t h e  t-axis contains the  

i n t e r v a l  

d imens iona l  space of points  

Ia, and l e t  S be an open connected set i n  the 2np + p + 1 

a 
The functions Li, 9, I?: a re  assumed continuous w i t h  continuous 

p a r t i a l  der iva t ives  through those of t h i r d  order i n  

are t o  have such cont inui ty  propert ies  i n  S. For each a,  t h e  matrix 
0’ Jk Ra, and J 

a 

D” 

where Da i s  an r by r diagonal Ra 7 1 i s  assumed of rank q + r i n  

matrix w i t h  Nl, . . o ,  Na as diagonal elements. r 
a The matrix 

i s  assumed of rank s -t 1 i n  S. 



An admissible s e t  i s  a s e t  ( t , x ,y )  i n  Ra f o r  some a = 1, ..., p ,  

a' An admissible sub-arc C is  a s e t  of funct ions x ( t ) ,  y ( t ) ,  t on I 

with each ( t , x ,y )  admissible, and such t h a t  x ( t )  i s  continuous and 

k ( t ) ,  y ( t )  a r e  piecewise continuous on I . An admissible a rc  i s  a 

p a r t i t i o n  s e t  

C , a = 1, *.., p, such t h a t  the s e t  (to, ..., t 
is  i n  S. 

a 

a 
(to, ..*, t ) together with a s e t  of admissible sub-arcs 

P + 
x ( t o > ,  x( t ; ) ,x( t l )  ,..., x ( t  1) 

a P' P 

On introducing a generalized Hamiltonian funct ion H a s  defined 

below and u t i l i z i n g  t h e  normal form of t h e  d i f f e r e n t i a l  equation 

cons t ra in ts ,  one can now apply the  theory of Section D;to obtain the  

following mul t ip l i e r  r u l e .  

(2 1 

I 

The Mult ipl ier  R u l e  

J + +J J 
0 J tb J c t  P Jcxi(t  0 1 c x i ( q  C X i ( t b )  P 1 

An admissible a r c  E f o r  which 

i s  sa id  t o  s a t i s f y  t h e  mul t ip l ie r  r u l e  i f  t h e r e  e x i s t s  a funct ion 



Between corners of a minimizing a rc  E t h e  equations 

= 0, v H = 0 (not summed) 
"h 

2 = H  , h i = - H  
i hi 

hold and hence also 

Transversal i ty  Conditions f o r  Normal Arcs 

Under t h e  usual normality assumptions, t h e  t r a n s v e r s a l i t y  matrix 

can be put  i n t o  a form having one fewer rows. This l eads  t o  t h e  

following statement of t r ansve r sa l i t y  conditions.  

For a normal minimizing arc  the t r ansve r sa l i t y  matrix 

i s  of rank s. 

Since the matrix i s  of order s + 1 by (n+l) (p+ l ) ,  t h e  requirement 

t h a t  the rank be s imposes (n+l) (p+l )  - s conditions.  This i s  one 

more condition than was imposed by (21, which was s u f f i c i e n t  t o  determine 

t h e  mul t ip l i e r s  up t o  an a rb i t r a ry  propor t iona l i ty  f a c t o r .  

Weierstrass Condition 

For a normal minimizing a r c  E t h e  inequal i ty  

hiLi(t,X,Y) 2 hiLi(t,X,Y) 

must hold a t  each element (t ,x,y,h,p,v) of E f o r  a l l  admissible sets 

(t ,x,Y) s a t i s f y i n g  M (t ,x,Y) = 0 - and Nh(t,x,Y) - > 0. 
g 

Clebsch Condition 

For a normal minimizing arc E the  inequal i ty  

H 3r.n 0 
Y . Y  J e -  J e  



must hold a t  each element (t,x,y,X,b,v) of E f o r  a l l  s e t s  II~ , II m - 
sa t i s fy ing  M (t,x,y)rcj = 0 and N (t,x,y)sr. = 0 ,  where i n  t h e  l as t  

hY j J - 
gyj 

equation h ranges only over t h e  subset of' 1, .*. ,  r f o r  which 

N ( t , x ,y )  = 0. 
h 

For a normal minimizing a r c  t h e  mul t ip l i e r s  v are  all non- h 
negative 



SECTION .$I, A THm STAGE RE-ENTRY OPTIMIZATION PROBLEM 

I n  th i s  sec t ion  the  theory of Section I1 is  appl ied t o  a t h r e e  

s tage  re-entry problem. 

ample, c e r t a i n  simplifying assumptions are made. 
vehicle  i s  assumed t o  be a p a r t i c l e  of var iab le  mass, with thru-st meg- 

ni tude proport ional  t o  m a s s  f low r a t e  and t h r u s t  d i r ec t ion  subject  

t o  instantaneous change. Moreover, ex te rna l  forces  are required t o  

be funct ions of pos i t i on  only, while t h e  ea r th  i s  assumed sphe r i ca l ly  

symmetrical and nonrotating w i t h  respec t  t o  the  coordinate system 

of t h e  vehicle .  F ina l ly ,  motion i s  r e s t r i c t e d  t o  two dimensions, 

g rav i t a t iona l  acce lera t ion  is approximated by f i r s t  order  terms, and 

a i r  r e s i s t ance  i s  neglected. 

Since it i s  pr imari ly  an i l l u s t r a t i v e  ex- 

I n  p a r t i c u l a r ,  t h e  

The foregoing conditions allow t h e  motion of t h e  vehic le  t o  be 

described by t h e  following equations : 

( -a2x + c~ m - l  cos e, 1 t < t < tl, 
0 -  

tl 5 t t2, 

t2 < t < t3’ -1 = [ I::’+ cs3m cos e, - -  

+ 2a2y -k dBlm -1 s i n  8, to < t C tl, r -go - 
tl 5 t c t2, 

t t c t3, + 2a2y + c !  rn - l  s i n  e, 3 2 -  - 

-B1, to - t < tl, 

Iil = ’i 0,  t < t < t*, 1 -  



where t i s  i n i t i a l  time, t is f i n a l  time, and tl, t2 a r e  
0 3 

intermediate s taging times. The symbols a, go represent  g rav i t a t ion  

constants ,  and Bl, B denote constant mass flow r a t e s .  This des- 

c r ip t ion  implies a burning arc ,  a coast  a rc ,  and f i n a l l y  a burning 
3 

a r c ,  with B not necessar i ly  d i f f e ren t  from . 3 B1 
The following end and intermediate point  conditions w i l l  

be imposed. 

Jl t = 0, 

J* z u (to) - uo =o, 
0 

J3 v (to) = 0 ,  

J4 z x (to) = 0, 

- J5 = Y (to) - Yo = 0 ,  

J6 x (tl) - x1 = 0, 

J7 E y (t,) - y2 = 0, 

J8 E x (t,) - x3 = 0, 

J 3 Y (t,) - y3 = 0,  9 
J~~ f m (t,) - 4 = 0, 

and 

o ,  yo, xl, y2, x3, y3, nsJ 5, B1t and B with u known constants .  3 
The funct ion t o  be minimized i s  taken t o  be the  sum of t h e  times 

of the  powered s tages ,  t h a t  i s ,  

J E t l  - to + t3 - t2. 
0 

If B = B t h i s  i s  equivalent t o  requi r ing  t h a t  t h e  f u e l  used be 

minimized, o r  J X m (to)o The conditions J and J insure the  

exis tence of t h ree  s tages .  

1 3’ 

0 6 7 

The Mul t ip l ie r  Rule of Section 7 allows the  following Hamiltonian 

t o  be wr i t t en :  



I -  

[Al (-a2x + cBlm-lcos 0 )  + A, ( -go + 2a2y + cBlm-lsin e )  
+ 1 u -t 14" + A (-Bl), t < t < tl, 3 5 0 -  

3 x1 (-a2x) + 1, (-g + 2a2y) + x u + x4v, tl 5 t < t,, 

Ca% + cB m-lcos e )  + 1, (-go + 2a2y + cB3m-lsin e )  1 3 

The Euler equations f o r  t h i s  Hamiltonian are: 

il + x3 = 0 ,  

1, + 14 = 0 ,  

x3 - a 1, = 0 ,  

i5 2 

2 

A, + 2a2h2 = 0 ,  

- cBlm-2 (1, cos 0 + h s i n  6) = 0,  

cBlm '' (\ s i n  6 - 1, cos e )  = 0 ,  

f o r  t i n  [to, tl); 

AI + h3 = 0,  

A, + 14 ' -  0 ,  

- a2hl = 0 ,  

1, + 2a2x2 = 0,  

f o r  t i n  rtl, t ); ana 2 

h c A3 = 0, 

i, + 14 = 0 ,  

2 X3 - a hl = 0 ,  

i;, + 2a2x = 0 ,  

5;, - cB3m 

-1 cB m 3 

2 
-2 (hl cos e + 1, s i n  6 )  = 0 ,  

(1, s i n  e - 1 cos e )  = 0 ,  2 

f o r  t i n  It,, t3l  



Simple techniques for in tegra t ion  allow these  equations t o  be 

expressed i n  in tegra ted  form a s  follows: 

1, = ~1 s i n  a ( t  + c,), - 
l3 = -% cos a ( t  + el) , 
h4 = -A2 & cosh & (t + C,), 

f o r  t < t < tl; 
0 -  

f o r  t - < t < t2; and 

x1 = f+, s i n  a ( t  + C~ ), 

h2 -. pi sinh d 2 ( t  + C; ), 
11 11 

h4 = -A; & cosh &(t + C;' ), 

for t2 - < t 5 t3. It i s  c l e a r  i n  expressing 1 X2, h3, X4 a s  functions 

of time with two constants of in tegra t ion ,  t h a t  t h e  last two M e r  

equations i n  s tage  1 and s tage 3 have been ignored. These equations 

toge ther  with t h e  Weierstrass condition w i l l  be used t o  expressed t h e  

cont ro l  angle as a function o f t h e  mul t ip l i e r s  X1 and 1 
l a s t  M e r  equation of s tage  1 and s tage  3 w e  have (for hl # 0, cos 8 # 0) 

F r o m  t h e  2 "  

2/11 
t a n  8 = 1 

and hence 

s i n  e = 2 

and 



From t h e  Weierstrass condition of sect ion X T ,  
-I cBlm (Al cos B + 1 s i n  B - 1 2 1 cos a - h2 s i n  a )  > - 0 

f o r  

and 

equations of motion a r e  s a t i s f i e d .  

i s  equivalent t o  maximizing the  following function (with respect  t o  a): 

to - < t < t o  
Q: 

Here 8 i s  t h e  control angle t h a t  ac tua l ly  optimizes, 

ranges over all possible control  angles for which t h e  o r i g i n a l  

This expression being non-negative 

W = 1 cos a - 1 s i n  a. 
-- -1 W 2% < 0 which gives 

1 2 

Thus - - s: 0 and 

-A s i n  (1: + 1 cos (1: = 0 

-1 cos cx - 1 s i n  a <  0. 

1 2 

1 2 - and 

thus t a n  a = 1 and 

I , ----- 
which implies t h a t  cos (2. = X1 / J  1; + 1; and s imi la r ly  t h a t  

s i n  a = b 2 / e T  , HencH t h e  control  angle 8 is  expressed as 

follows : 

f o r  s tage 1. 

The f i f t h  Euler equation on stage 1 and s tage 3 becomes 

The same expressions f o r  control angle 8 hold f o r  s tage  3 .  

The t r a n s v e r s a l i t y  matrix 

t cl t < tl, 

t 2 < t < t  - - 3' 

0 -  

which i s  given a t  t h e  end of t h i s  sect ion 
has eleven TOWS and twenty-foar columns and i s  of rank ten.  From 

t h i s  m a t r i x  fourteen end and intermediate conditions are found. 

These conditions imply t h a t  a11 mult ip l ie rs ,  except possibly 

a t  i; and x4 a t  t2, a r e  continuous across  staging times. x3 1 



I *  37 
Alsc t h e  following condition holds a t  t,: I 

A s imi la r  

The other  

+ + 
where = h ( t l I 0  

3 3  
condition t h a t  holds a t  t is:  

2 
-1 i- 

cB3m (hlCosB + 1 s i n e )  - (B ) + (Xq - 1;) v - 1 = 0. 5 3  2 

four  conditions implied by t h e  t r ansve r sa l i t y  condition are: 

11 

Al= 
A =  2 

I I  

c =  1 

Because of t h e  

A =  1 

11  

11 

(t ) = ‘3, 
2 3  

- H ( t  1 + l =  3 
3 

An optimal t r a j e c t o r y  f o r  t h i s  problem requi res  t h e  f ind ing  of 

f i f t e e n  constants of in tegra t ion  from t h e  equations of motion, a l i k e  

number from t h e  E u l e r  equations, and t h e  four  times to, tl’ t*’ and 
t Fourteen t r ansve r sa l i t y  conditions,  t e n  end and intermediate 

condi t ions,  and t e n  requirements on state var iab les  a t  s taging poin ts  

provide t h e  necessary number of conditions for t h e  determination of 

t hese  constants.  

3‘ 

It i s  possible  t o  s t a r t  a t  t h e  last  s tage  t o  determine t h e  

in t eg ra t ion  constants f o r  t h e  M e r  equations i n  terms of mul t ip l i e r  

values.  The constants  f o r  t h e  t h i r d  s tage  are:  

I . -. 
3 - 

The values f o r  

fram t h e  t h i r d  

d i f fe rence  

-X,,/a, (A,, i s  t h e  f i n a l  value of 1 ) , 3 // /J/ 

cont inui ty  of X1 and l3 a t  t2, 
1 

9 

? c1 0 

11 11 

A and C2 only hold f o r  t h e  t h i r d  2 

s tage  back in to  t h e  second s tage w e  

s tage.  To proceed 

need t h e  value of t h e  



A q ( t z )  - A 4 ( t ; ) .  This can be found from t h e  t r a n s v e r s a l i t y  condition 

above which holds at t Supposing t h i s  equation solved, t h e  de te r -  

mination of constants A '  C '  f o r  t h e  second s tage can proceed, and 

these values also hold for t h e  f i r s t  s tage f o r  

analogous procedure i s  applied t o  1 and 1 f o r  t h e  f i rs t  stage.  

?'  

2' 2 
and A4"  An 

I 2  

1 3 

. 



l .  H (to -1 
1 
0 
0 
s 
3 
0 
0 
0 

G 

A 
>d 
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- H ( t 3 ) + l  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11 (t,) I 5 
0 
0 
0 
0 
3 
0 
3 
0 
3 
0 

12 (t2) I ; 
0 
0 
G 
0 
0 
0 
0 
0 
0 
G 

h3 (t3 1 
3 

r, 
0 
c> 
0 
ci 
1 
0 
G 

/- 
J 

-A1 (to) 
0 
1 
13 
0 
0 
0 
0 
0 
0 
0 

hp(t1)li 
0 
0 
0 
0 
0 
C 
0 
0 
0 
0 

I; 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

14 (t3 1 
0 
0 
0 
0 
0 
G 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
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SECZIOX XI. LTCESSARY CCXDITIONS FOE A SIX STAC-E EARTH-MOON 

"FATE - cGTO3Y OPTIMIZATIOB FROBLEM 

The problem i s  t o  determine a f u e l  minimizing t r a j e c t o r y  f o r  a 

earth-moon rocket f o r  which s i x  d e f i n i t e  s tages  are defined by spec i f ied  

t h r u s t  magnitudes and by intermediate and end point  constraints .  The 

procedure w i l l  be t o  apply t h e  9enbow multistage calculus 3f var ia t ions  

theory as modified by R. W, 'i-iunt (unpublished paper presented t o  contractor  

conference Oct. 9, 1963, on "A GeneraLized Bolza-Mayer Problem with D i s -  

continuous Solutions and Tariable Intermediate Points") and by Boyce and 

Zinnstaedter (Progress Report No. 7 ) .  The problem studied here i s  s i m i -  

l a r  t o  one t r e a t e d  by Dr. .,'a2 Anfirus ( i n  an unpublished paper a l so  

presented t o  t h e  Oct. 9, 1963 conference, e n t i t l e d  "A Variational 

Formulation of Earth t o  Moon Trajectories"; ,  but our approach i s  somewhat 

d i f f e r e n t  

I n  t h i s  sect ion t h e  Euler-Lagrange equations a r e  obtained from t h e  

m u l t i p l i e r  r u l e  of Section -1, simplified vector forms of t h e  equations 

a r e  developed, t h e  Weierstrass condition i s  used t o  deduce a m a x i m u m  

pr inc ip le ,  and t h e  t ransversa l i ty  matrix i s  given. 

ASS 'WTIONS 

1. The first p a r t  of t h e  rocket f l ight ,  from b l a s t  o f f  through t h e  

atmosphere, i s  not included i n  t h i s  study. I n i t i a l  values of posi t ion,  

ve loc i ty ,  and mass a r e  supposed given a t  s u f f i c i e n t  a l t i t u d e  t o  m a k e  

atmospheric res i s tance  negligible.  

2.  The only forces  acting on the  rocket a r e  t h e  motor t h r u s t  and 

t h e  grav i ta t iona l  forces  of t h e  ear th ,  moon, and sun. 

3 .  The f u e l  burning r a t e  and t h e  t h r u s t  magnitude a r e  assumed t o  

be known constants i n  each stage. 

4. The d i rec t ion  of th rus t  i s  along t h e  axial  d i rec t ion  of t h e  

rocket  and the  center  of mass of t h e  rocket i s  f ixed with respect  t o  t h e  

rocket.  

5.  Roll e f f e c t s  on t h e  rocket are ignored. 
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F O W L A T I O N  OF ’I?IE FROELEM 

c 

The independent var iable  i s  t h e  time t and the  s t a t e  var iables  
are the  posi t ion coordinates x9y,z  i n  an ephemeris coordinate system, 

t h e  veloci ty  components u,v,w, and t h e  mass m .The control  var iabies  

are t h e  p i t c h  angle lp and t h e  yaw angle fV determining t h e  d i rec t ion  

of t h r u s t .  The burning r a t e  is  constant i n  each s5age and i s  denoted 
by @,,a = 1,***,6. Thrust magnitude F i s  a l so  constar t  i n  each s t a g e ,  

Staging i n t e r v a l s  a r e  denoted by 

A 

a 

< t <  ta f o r  a 1,2,3,4,5 and t < +, < t f o r  a = 6 ,  
a ‘a : t a -1  - a-1 - - 

>ravi ta t iona l  forces  a r e  functions of posi t ion coordinates only and have 

components represented by Xa ( X ~ Y , ~ ) ~  Y :x,y,z);, Za!x,y,z). a 
Let underlined symbols deriote vectors as follows: 

where subscr ipts  x,y,z indicate  p a r t i a l  der iva t ives .  

The equations of motion of t h e  rocket thea a r e  

Iil = -pa . 
The end and intermediate conditions, i n  t h e  notation of t h e  paper by 

Boyce and Linnstaedter,  a r e  assumed t o  be 

J = m - m ( t s )  t h e  function t.0 b? minimized, 
0 0 
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The q. are functions defining the mission o r b i t  about t h e  moon. The 

following cons t ra in ts  a r e  a l so  assumed: 

1 

+ + - \  

(3) m ( t , )  - m(t ; )  - c6 = 0 ,  m ( t 4 )  - m ( t 4 j  - c7 = C, p, = F~ = p 5 = F 5 = 0.  

and t h e  numbers Pa, Fa f o r  a = 1,2,4,6 a r e  known pos i t ive  constantso 

Lagrange mul t ip l ie rs  11,***J17 w i l l  be introduced through a general- 

ized Hamiltonian H defined as  follows.' 

H(t,x,g,m,i,&,~p,%yj = F a 1 + -a X + ~4 - u - ",'a 

f o r  t i n  Ia . We apply t h e  corol lary t o  t h e  mul t ip l ie r  rule i n  Section 

Tt' t o  obtain t h e  following Euler-LagraEge equations: 

o = F m - l  1 / a &  a 

For stages i n  which Fa = 0 (or f3 = 0 )  t h e  optimizing arc i s  a 
s ingular  i n  t h e  sense defined i n  Section -\' i n  t h a t  t h e  determinant 
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( 5 )  

i s  zero. 

If Fa and cos iv a r e  not zero, t h e  next t o  t h e  l a s t  of equations 
.L 

(4) implied t h a t  

a rd  hence t h a t  

The s ign  of t h e  r a d i c a l  would be ambiguous but  i s  l a t e r  shown t o  be pos i t i ve .  

From t h e  l a s t  of equations ( h ) ,  assuming cos $p # 0 

s i n  xy - 1, cos ly = o . 
it follows t h a t  

?her e f or e 

where 1 = Jll 2 + 1, 2 -k 1: , the magnitude of 1 . - 
3 c 3  

I From these  results it follows t h a t  

1 = -1 s i n  'I( cos -Xy 
1 P 

1 

1 = 1 s i n  yy 

= x cos yp cos & 
2 

3 

Thus I , ,  A,, 1, are rectangular coordinates of a point  having d is tance  1 

and angles &, measured from the 1, axis and x. 
shown i n  t h e  f igu re .  

from t he  h , ~ ,  plane a s  
& Y 

By use of equations (8), one can now wr i t e  t h e  equations of motion 

(1) and the  Ner -Lagrange  equations i n  t h e  following form, which i s  f r e e  
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of  t h e  control  var iab les  irP x, - 

(9) 
rh = -pa 

Also, along an extrsmal, The Hamiltonian car- be wri t t en  

- - ‘h * x 4- & 2 -t d(A*,mj/5zj - -a m9 
s ince  F a m-’ x - x,/B, = mi-  + GI-, 

.^“ne system (9)  can be wr i t ten  a s  a system of s i x  second order d i f f e r -  

e n t i a l  equations i n  the  s i x  3ependenZ var iab les  ~ , y , z , h ~ , h ~ ~ X ~  : 

.. x = F X‘)lmo - pat)’’ 1 + x 
a - -a - 

ill) 
..* A = - A %  a - - 

Ey tak ing  t h e  vector  cross product of 

arxl of x with t h e  second we get 

with the  f i r s t  o f  equatiocs (21) - 
- 

If t h e  rocket i s  Gear enoigh t h e  ea r th  t h a t  o ther  gravi5at iooal  forces 
can be neglected,  then t h e  grav i ta t iona l  force vector  X can be wr i t ten  - 

w “-ga r-3 x, -. -a 

where ga i s  a constant.  I t  follows t h a t  

wi th  similar expressions f o r  the  otrier elements i n  t h e  matrix Ma. Her,ce 
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and equations (13) become 

-3 - -  x x.2 = -gar h x x 

On adding equations (14), w e  ge t  

(14) h X g + x ) ( x = o  

which holds along an extremal. 

THE WEIERSTRASS C~~EIFIOX ANI MAXIMdD P-3IKCIFLE 
From t h e  Weierstrass condition of Section V J  it follows t h a t ,  i n  

case Fa # 0 , t h e  inequal i ty  

Xy + A, s i n  g..- > -1 -x1 s i n  xp cos xy + 1, cos fp cos 

x cos % cos yi + h3 s i n  yi 
must hold for all admissible 

t h a t  an optimum t r a j e c t o r y  must have control  var iables  

i n g  t h e  function 

s i n  ~p cos X, -+ 
\ r =  1 I - 

2 

X p 9 X y  . This implies t h e  Maximum PrinciF;.e 

fps x.f m u r i m i z -  

(13) L = -1 s i n  lp cos fy + 1, cos Yp cos Xk’ + 1, s i n  xy . 
1 

The f i rs t  p a r t i a l  der iva t ives  of L must 

L 1, s i n  fp  s i n  iy 
f y  = 

These a re  t h e  same as t h e  

f a c t o r  F~ removed. 

i n t o  (15) gives 

- s i n  1(p COS 
2 

I cos ip s i n  
2 

l a s t  two of t h e  

Subst i tut ion of 

therefore  be zero: 

Xy = O 

& + 1, cos f y  = 0 

E u l e r  equations (4) with the  

the  solut ions (61, ( 7 )  of (4 )  

where s i s  a. s ign f a c t o r  *l a r i s i n g  from the  ambiguity of  t h e  
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radicals in (6) and (7). However, it is clear that s must be +19 

since if s = -1 some choice of xpp.. & would give L a grea%er value 

than -1. 
Thus 

on an optimum trajectory. 

The transversality matrix in the form given for normal arzs in 
Section V will have 19 rows and 56 columns and must be of rank L8. 

calculation of the matrix will show that certain columns have zero elements 

in all but the first row. It will then follow that the element in that row 
must also be zero. 

its vanishing implies the continuity of the function at the point. 

some of the transversality conditions simplify to the requirements that 
the following functions be continuous at the points specified: 

Formal 

Since such an element is of the type f(3-) - f ( c - j  

Thus 

1, at tZ’t2,t3>t4,tc 4 

Also I,(t6) = 1 . 
ELementary row and column transformations now make it possible to 

express the remaining transversality conditions as the requirement that 

the following matrices be of ranks 3 and 5 ,  respectively: 

+ + + + + Y + 
j I ‘12 - ’12 ’22 - I*, ‘32 ‘ 32  I52 - ‘ 5 2  
I 

Z c 0 0 
y2 2 

X 
2 

2 
y2 2 

U v W X 
2 2 2 2 

U v W 
2 2 2 

0 0 0 
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I n  the f i r s t  of the  above matrices subscr ip ts  2 have been used t o  

ind ica t e  evaluation a t  t2 . I n  t h e  second matrix all of t h e  a r e  

evaluated a t  t6 , and subscr ipt  6 on t h e  1 ’ s  ind ica tes  such evaluation. 

The symbol G denotes H ( t 3 )  - H ( t 3 )  - H ( t 6 )  . + 


